General Microbiology
Microbiology (from Greek μῑκρος, mīkros, "small"; βίος, bios, "life"; and -λογία, -logia) is the study of microscopic organisms, which are defined as any living organism that is either a single cell (unicellular), a cell cluster, or has no cells at all (acellular).[1] This includes eukaryotes, such as fungi and protists, and prokaryotes. Viruses[2] and prions, though not strictly classed as living organisms, are also studied. Microbiology typically includes the study of the immune system, or immunology. Generally, immune systems interact with pathogenic microbes; these two disciplines often intersect which is why many colleges offer a paired degree such as "Microbiology and Immunology".
Microbiology is a broad term which includes virology, mycology, parasitology, bacteriology, immunology and other branches. A microbiologist is a specialist in microbiology and these related topics.
Microbiological procedures usually must be aseptic, and use a variety of tools such as light microscopes with a combination of stains and dyes.The most commonly used stains are called basic dyes, and are composed of positively charged molecules. Two types of basic dyes are simple stains and differential stains. Simple stains consist of one dye and identify the shape and multicell arrangement of bacteria. Methylene blue, carbolfuchsin, safranin, and crystal violet are some of the most commonly used stains. Differential stains on the other hand, use two or more dyes and help us to distinguish between two or more organisms or two or different parts of the organism. Types of differential stains are gram, Ziehl-Neelsen acid fast, negative, flagella, and endospore. Specific constraints apply to particular fields of microbiology, such as parasitology, which heavily utilizes the light microscopy, whereas microscopy's utility in bacteriology is limited due to the similarity in many cells' physiology. Indeed, most means of differentiating bacteria is based on growth or biochemical reactions. Virology has very little need for light microscopes, relying on almost entirely molecular means. Mycology relies on all technologies the most evenly, from macroscopy to molecular techniques.
Microbiology is actively researched, and the field is advancing continuously. It is estimated that only about one percent of the microorganisms present in a given environmental sample are culturable[3] and the number of bacterial cells and species on Earth is still not possible to be determined, recent estimates indicate that it can be extremely high (5 Exp 30 cells on Earth, unknown number of species). Although microbes were directly observed over three hundred years ago, the precise determination, quantitation and description of its functions is far to be complete, given the overwhelming diversity detected by genetic and culture-independent means.
Microbiology is a broad term which includes virology, mycology, parasitology, bacteriology, immunology and other branches. A microbiologist is a specialist in microbiology and these related topics.
Microbiological procedures usually must be aseptic, and use a variety of tools such as light microscopes with a combination of stains and dyes.The most commonly used stains are called basic dyes, and are composed of positively charged molecules. Two types of basic dyes are simple stains and differential stains. Simple stains consist of one dye and identify the shape and multicell arrangement of bacteria. Methylene blue, carbolfuchsin, safranin, and crystal violet are some of the most commonly used stains. Differential stains on the other hand, use two or more dyes and help us to distinguish between two or more organisms or two or different parts of the organism. Types of differential stains are gram, Ziehl-Neelsen acid fast, negative, flagella, and endospore. Specific constraints apply to particular fields of microbiology, such as parasitology, which heavily utilizes the light microscopy, whereas microscopy's utility in bacteriology is limited due to the similarity in many cells' physiology. Indeed, most means of differentiating bacteria is based on growth or biochemical reactions. Virology has very little need for light microscopes, relying on almost entirely molecular means. Mycology relies on all technologies the most evenly, from macroscopy to molecular techniques.
Microbiology is actively researched, and the field is advancing continuously. It is estimated that only about one percent of the microorganisms present in a given environmental sample are culturable[3] and the number of bacterial cells and species on Earth is still not possible to be determined, recent estimates indicate that it can be extremely high (5 Exp 30 cells on Earth, unknown number of species). Although microbes were directly observed over three hundred years ago, the precise determination, quantitation and description of its functions is far to be complete, given the overwhelming diversity detected by genetic and culture-independent means.
|
Food Microbiology
Food microbiology is the study of the microorganisms that inhabit, create, or contaminate food. Including the study of microorganisms causing food spoilage.[1] "Good" bacteria, however, such as probiotics, are becoming increasingly important in food science.[2][3][4] In addition, microorganisms are essential for the production of foods such as cheese, yogurt, other fermented foods, bread, beer and wine.
Fermentation Of Foods By Microorganisms
Fermentation is one way microorganisms can change a food. Yeast, especially Saccharomyces cerevisiae, is used to leaven bread, brew beer and make wine. Certain bacteria, including lactic acid bacteria, are used to make yogurt, cheese, hot sauce, pickles, fermented sausages and dishes such as kimchi. A common effect of these fermentations is that the food product is less hospitable to other microorganisms, including pathogens and spoilage-causing microorganisms, thus extending the food's shelf-life.
Food fermentations are ancient technologies that harness microorganisms and their enzymes to improve the human diet. Fermented foods keep better, have enhanced flavours, textures and aromas, and may also possess certain health benefits, including superior digestibility. For vegetarians, fermented foods serve as palatable, protein-rich meat substitutes.[3] Some cheese varieties also require molds to ripen and develop their characteristic flavors. Asian cuisines rely on a large repertoire of fermented foods. In particular, Aspergillus oryzae and A. sojae, sometimes called koji molds, are employed in many ways. Their hydrolytic enzymes suit them for growth on starch and other carbohydrate-rich substrates. In the koji process, fungal enzymes perform the same function as the malting enzymes used in the beer fermentations of western cultures. The koji molds release amylases that break down rice starch, which in turn can be fermented to make rice wine. Fermented rice beverages have numerous local variations and names, depending on country and region. Rice wine is called shaoshing in parts of China, sake in Japan, takj or yakju in Korea, as well as by many other names across Asia. The koji molds are also effective in a variety of legume fermentations, of which miso and soy sauce are best known. Miso is a mixture of soybeans and cereals usually used to flavour soups. Soy sauce is a flavourful, salty liquid sauce made from soybeans that have been fermented by koji molds, yeasts, as well as several halophilic bacteria. Other names for soy sauce include jiangyou (China), makjang and kanjang (Korea), toyo (Philippines) and siiu (Thailand).[5] |
Water Microbiology [Sewage Treatment]
Sewage treatment is the process of removing contaminants from wastewater and household sewage, both runoff (effluents) and domestic. It includes physical, chemical, and biological processes to remove physical, chemical and biological contaminants. Its objective is to produce an environmentally safe fluid waste stream (or treated effluent) and a solid waste (or treated sludge) suitable for disposal or reuse (usually as farm fertilizer). Using advanced technology it is now possible to re-use sewage effluent for drinking water, although Singapore is the only country to implement such technology on a production scale in its production of NEWater.
Sewage can be treated close to where it is created, a decentralised system (in septic tanks, biofilters or aerobic treatment systems), or be collected and transported by a network of pipes and pump stations to a municipal treatment plant, a centralised system (see sewerage and pipes and infrastructure). Sewage collection and treatment is typically subject to local, state and federal regulations and standards. Industrial sources of sewage often require specialized treatment processes (see Industrial wastewater treatment). Sewage treatment generally involves three stages, called primary, secondary and tertiary treatment.
Disinfection
The purpose of disinfection in the treatment of waste water is to substantially reduce the number of microorganisms in the water to be discharged back into the environment for the later use of drinking, bathing, irrigation, etc. The effectiveness of disinfection depends on the quality of the water being treated (e.g., cloudiness, pH, etc.), the type of disinfection being used, the disinfectant dosage (concentration and time), and other environmental variables. Cloudy water will be treated less successfully, since solid matter can shield organisms, especially from ultraviolet light or if contact times are low. Generally, short contact times, low doses and high flows all militate against effective disinfection. Common methods of disinfection include ozone, chlorine, ultraviolet light, or sodium hypochlorite.[7]:16 Chloramine, which is used for drinking water, is not used in the treatment of waste water because of its persistence. After multiple steps of disinfection, the treated water is ready to be released back into the water cycle by means of the nearest body of water or agriculture. Afterwards, the water can be transferred to reserves for everyday human uses.
Chlorination remains the most common form of waste water disinfection in North America due to its low cost and long-term history of effectiveness. One disadvantage is that chlorination of residual organic material can generate chlorinated-organic compounds that may be carcinogenic or harmful to the environment. Residual chlorine or chloramines may also be capable of chlorinating organic material in the natural aquatic environment. Further, because residual chlorine is toxic to aquatic species, the treated effluent must also be chemically dechlorinated, adding to the complexity and cost of treatment. Ultraviolet (UV) light can be used instead of chlorine, iodine, or other chemicals. Because no chemicals are used, the treated water has no adverse effect on organisms that later consume it, as may be the case with other methods. UV radiation causes damage to the genetic structure of bacteria, viruses, and other pathogens, making them incapable of reproduction. The key disadvantages of UV disinfection are the need for frequent lamp maintenance and replacement and the need for a highly treated effluent to ensure that the target microorganisms are not shielded from the UV radiation (i.e., any solids present in the treated effluent may protect microorganisms from the UV light). In the United Kingdom, UV light is becoming the most common means of disinfection because of the concerns about the impacts of chlorine in chlorinating residual organics in the wastewater and in chlorinating organics in the receiving water. Some sewage treatment systems in Canada and the US also use UV light for their effluent water disinfection.[18][19] Ozone (O3) is generated by passing oxygen (O2) through a high voltage potential resulting in a third oxygen atom becoming attached and forming O3. Ozone is very unstable and reactive and oxidizes most organic material it comes in contact with, thereby destroying many pathogenic microorganisms. Ozone is considered to be safer than chlorine because, unlike chlorine which has to be stored on site (highly poisonous in the event of an accidental release), ozone is generated onsite as needed. Ozonation also produces fewer disinfection by-products than chlorination. A disadvantage of ozone disinfection is the high cost of the ozone generation equipment and the requirements for special operators. |
|