2016(I)
LIFE SCIENCES TEST BOOKLET

Maximum Marks: 200

INSTRUCTIONS

1. You have opted for English as medium of Question Paper. This Test Booklet contains one hundred and forty five ($20 \mathrm{Part}^{\prime} \mathrm{A}$ ' +50 Part ' B ' $+75 \mathrm{Part}{ }^{\prime} \mathrm{C}^{\prime}$) Multiple Choice Questions (MCQs). You are required to answer a maximum of 15,35 and 25 questions from part ' A ' ' B ' and ' C ' respectively. If more than required number of questions are answered, only first 15,35 and 25 questions in Parts ' A ' B ' and ' C^{\prime} ' respectively, will be taken up for evaluation.
2. OMR answer sheet has been provided separately. Before you start filling up your particulars, please ensure that the booklet contains requisite number of pages and that these are not torn or mutilated. If it is so, you may request the Invigilator to change the booklet of the same code. Likewise, check the OMR answer sheet also. Sheets for rough work have been appended to the test booklet.
3. Write your Roll No., Name and Serial Number of this Test Booklet on the OMR answer sheet in the space provided. Also put your signatures in the space earmarked.
4. You must darken the appropriate circles with a black ball pen related to Roll Number, Subject Code, Booklet Code and Centre Code on the OMR answer sheet. It is the sole responsibility of the candidate to meticulously follow the instructions given on the Answer Sheet, failing which, the computer shall not be able to decipher the correct details which may ultimately result in loss, including rejection of the OMR answer sheet.
5. Each question in Part ' A ' and ' B ' carries 2 marks and Part ' C ' questions carry 4 marks each respectively. There will be negative marking @ 25% for each wrong answer.
6. Below each question in Part ' A ', ' B ' and ' C ' four alternatives or responses are given. Only one of these alternatives is the "correct" option to the question. You have to find, for each question, the correct or the best answer.
7. Candidates found copying or resorting to any unfair means are liable to be disqualified from this and future examinations.
8. Candidate should not write anything anywhere except on answer sheet or sheets for rough work.
9. Use of calculator is NOT permitted.
10. After the test is over, at the perforation point, tear the OMR answer sheet, hand over the original OMR answer sheet to the invigilator and retain the carbonless copy for your record.
11. Candidates who sit for the entire duration of the exam will only be permitted to carry their Test booklet.

Roll $_{N_{0}} 364504$
Name Namithal:H.
I have verified all the information filled in by the candidate.

S/12RCS/16-3BE-1A

PART 'A'

1. "My friend Raju has more than 1000 books", said Ram. "Oh no, he has less than 1000 books". said Shyam. "Well, Raju certainly has at least one book", said Geeta. If only one of these statements is true, how many books does Raju have?
7.1
2. 999
3
3. 1000
4. 1001
5. Of the following, which is the odd one out?
6. Cone
7. Torus
8. Sphere 2
9. Ellipsoid
10. An infinite number of identical circular discs each of radius $\frac{1}{2}$ are tightly packed such that the centres of the discs are at integer values of coordinates x and y. The ratio of the area of the uncovered patches to the total area is
11. $1-\pi / 4$
1
12. $\pi / 4$
13. $1-\pi$
14. π
15. It takes 5 days for a steamboat to travel from A to B along a river. It takes 7 days to return from B to A. How many days will it take for a raft to drift from A to B (all speeds stay constant)?
16. 13
17. 35
18. 6
19. 12
20. $\quad N$ is a four digit number. If the leftmost digit is removed, the resulting three digit number is $1 / 9^{\text {th }}$ of N. How many such N are possible?
21. 10
22. 9
23. 8
24. 7
25. What is the minimum number of moves required to transform figure 1 to figure 2 ? A move is defined as removing a coin and placing it such that it touches two other coins in its new position.

26. 1
2
27. 2
28. 3
29. 4
30. Find the next figure " D "

31.

2

4.

8.

Which of the following inferences can be drawn from the above graph?

1. The total number of students qualifying in Physics in 2015 and 2014 is the same.
2. The number of students qualifying in Biology in 2015 is less than that in 2013
3. The number of Chemistry students qualifying in 2015 must be more than the number of students who qualified in Biology in 2014
The number of students qualifying in Physics in 2015 is equal to the number of students in Biology that qualified in
2014
4. A student appearing for an exam is declared to have failed the exam if his/her score is less than half the median score. This implies
5. 1/4 of the students appearing for the exam always fail.
6. if a student scores less than $1 / 4$ of the

4 maximum score, he/she always fails.
3. if a student scores more than $1 / 2$ of the maximum score, he/she always passes.
4. it is possible that no one fails.
10. The relationship among the numbers in each corner square is the same as that in the other corner squares. Find the missing number.

1. 10
2. 8
3. 12
4. Which of the following statements is logically incorrect?
T. I always speak the truth
5. I occasionally lie
6. I occasionally
7. I always lie 4
8. What comes next in the sequence?

9. AB and CD are two chords of a circle subtending 60° and 120° respectively at the same point on the circumference of the circle. Then $\mathrm{AB}: \mathrm{CD}$ is
10. $\sqrt{3}: 1$
3
11. $\sqrt{2}: 1$
12. $1: 1$
13. $\sqrt{3}: \sqrt{2}$
14. Which of the following best approximates $\sin \left(0.5^{\circ}\right)$?
15. 0.5
16. $0.5 \times \frac{\pi}{180}$

1
2. $0.5 \times \frac{\pi}{90}$
4. $0.5 \times \frac{\pi}{360}$
15. The set of numbers $(5,6,7, m, 6,7,8, n)$ has an arithmetic mean of 6 and mode (most frequently occurring number) of 7 . Then $m \times n=$

1. 18
1
2. 35
3. 28
4. The diagram shows a block of marble having the shape of a triangular prism. What is the maximum number of slabs of $10 \times 10 \times 5 \mathrm{~cm}^{3}$ size that can be cut parallel to the face on which the block is resting?

5. 50
6. 100
7. 125
8. 250
9. Brothers Santa and Chris walk to school from their house. The former takes 40 minutes while the latter, 30 minutes. One day Santa started 5 minutes earlier than Chris. In how many minutes would Chris overtake Santa?
10. 5
11. 15
12. 20
2
13. 25

PART 'B'

21. Which of the following is NOT true for cholesterol metabolism?
22. HMG-CoA reductase is the key regulator of cholesterol biosynthesis.
23. Biosynthesis takes place in the cytoplasm.
24. Reduction reactions use NADH as cofactor.
25. Cholesterol is transported by LDL in plasma. 4
26. Entry of enveloped viruses into its host cells is mediated by:
27. Only endocytosis
28. Both endocytosis and phagocytosis
29. Both endocytosis and membrane fusion
30. Only pinocytosis
31. The solubility of gases in water depends on their interaction with water molecules. Four gases i.e. carbon dioxide, oxygen, sulphur dioxide and ammonia are dissolved in water. In terms of their solubility which of the following statements is correct?
32. Ammonia $>$ Oxygen $>$ Sulphur dioxide $>$ Carbon dioxide
33. Oxygen $>$ Carbon dioxide $>$ Sulphur dioxide > Ammonia
34. Sulphur dioxide $>$ Oxygen $>$ Ammonia $>$ Carbon dioxide
35. Ammonia $>$ Sulphur dioxide $>$ Carbon dioxide $>$ Oxygen

4
24. E. coli is being grown in a medium containing both glucose and lactose. On depletion of glucose, expression of β-galactoside will

1. remain unchanged
2. increase.
3. decrease
4. initially decrease and then increase
5. Penicillin acts as a suicide substrate. Which one of the following steps of catalysis does a suicide inhibitor affect?

6. Histone deacytalase (HDAC) catalyses the removal of acetyl group from N -terminal of histones. Which amine acid of histone is involved in this process?
7. Lysine
1
8. Arginine
9. Asparagine
10. Histidine
11. Predominant interactions between phosphorlipids that stabilize a biological membrane include
12. hydrogen bonds and covalent interactions.
13. van der Waal and ionic interactions.
14. hydrophobic interactions and hydrogen bonding.
15. covalent and hydrophobic interactions.
16. Lateral diffusion of proteins in membrane can be followed and diffusion rate calculated by
17. Atomic force microscopy
18. Scanning electron microscopy
19. Transmission electron microscopy
20. FRAP
21. Error-free repair of double strand breaks in DNA is accomplished by
22. non-homologous end-joining.
23. base excision repair.

3
3. homologous recombination.
4. mismatch repair.
30. Labelling of membrane spanning domain of any integral membrane protein in a given plasma membrane vesicle (without disrupting its structure) is successfully carried out by

1. immunochemical methods. 3
2. metabolic labelling with radioisotopes.
3. hydrophobic photoaffinity labelling.
4. limited proteolysis followed by metabolic labelling.
5. Which one of the following statements about receptor - enzyme is FALSE?
6. A receptor - enzyme has an extracellular ligand binding domain, a transmembrane domain and an intracellular catalytic (enzyme) domain.
7. Many types of receptor enzymes are found in animals.
8. The signal transduction pathways of receptor - enzyme involve phosphorylatron cascades. Receptor - enzymes interact directly with intracellular G-proteins.
9. The -COOH group of cellular amino acids can form which of the following bonds inside the cell?
10. Ether and ester bonds.
11. Ester and amide bonds.

2
3. Amide and ether bonds.
4. Amide and carboxylic anhydride bonds
33. Following are some of the characteristics of MHC class I and class II molecules except one which is applicable only for MHC class

1. Identify the appropriate statement.
2. They are expressed constitutively on all nucleated cells.
3. They are glycosylated polypeptides with domain structure.
4. They are involved in presentation of antigen fragments to cells.
5. They are expressed on surface membrane of B cells
6. Which one of the following best defines an oncogene?
7. An oncogene never codes for a cell cycle protein, which promotes cell proliferation.
8. Oncogenes are always involved in inherited forms of cancer.
4 2. An oncogene codes for a protein that prevents a cell from undergoing apoptosis.
9. An oncogene is a dominantly expressed mutated gene that renders a cell advantageous towards survival.
10. Which of the following bacteria has subcellular localization in lysosomes?
11. Salmonella typhi
12. Streptococcus pneumoniae
13. Vibrio cholerae

4
4. Mycobacterium tuberculosis
36. RNA interference is mediated by both siRNA and miRNA. Which one of the following statement about them is NOT true?

1. Both siRNA and miRNA are processed by DICER.
2. Both siRNA and miRNA usually guide

3 silencing of the same genetic loci from which they originate.
3. miRNA is a natural molecule while siRNA is either natural or a synthetic one.
4. miRNA, but not siRNA is processed by Drosha.
37. Which one of the following photoreceptors plays a role in day length perception and circadian rhythms?

1. Zeitlupe family

2
2. Cryptochromes
3. Phototropins
4. UV Resistance locus 8
38. Which one of the following plant hormones use the two-component histidine kinase receptor system for signal transduction?

1. Auxin
3
2. Gibberellin
3. Cytokinin
4. Abscisic acid
5. The initial dorsal-ventral axis in amphibian embryos is determined by
6. the point of sperm entry.

1

2. gravity.
3. the point of contact with the uterus.
genetic differences in the cells.
4. During development, if a cell has committed
to a particular fate, it is said to be
5. pluripotent
6. totipotent
7. determined
8. differentiated
9. Rhizobial genes that participate in legume nodule formation are called nodulation
(nod) gens. The nod D -encoded protein
10. is an acetyl transferase that adds a fatty acyl chain to the Nod factor
11. binds to the nod box and induces transcription of all nod genes
12. catalyzes the linkage of N -acetyl glucosamine residues
13. influences the host specificity of Rhizobium
14. Bones of vertebrates are derived from embryonic
15. ectoderm
3
16. epiderm
17. mesoderm
18. endoderm
19. Sperm cell behaviour during double fertilezation in Arabidopsis can be stated as follows. Identify the INCORRECT statement:
20. Pollen tube bursts and discharges
sperm cells.
21. Sperm cells produce pollen tubes and
enter into female gametophyte.
22. The receptive antipodal cells break down when pollen tube enters the female gametophyte.
23. One sperm nucleus fuses with the egg cell and the other fuses with the central cells.
24. The transport of fructose into the enterocytes is mediated by:-
25. sodium-dependent glucose transporter I (SGLT 1).
26. glucose transporter 5 (GLUTs).
27. SGLT 2.
28. GLUT 4. 2
29. The di- and tripeptides are transported in the enterocytes by peptide transporter 1 that requires:-
30. Na^{+}
2
31. Ca^{++}
32. H^{+}
33. Cl^{-}
34. Which one of the following is the correct order of electron transport during light reaction in the thylakoid membrane of chloroplast?
35. P680 \rightarrow Cytochrome $b_{6} f \rightarrow \mathrm{PC} \rightarrow \mathrm{PQ}$

4
2. P680 $\rightarrow \mathrm{PC} \rightarrow$ Cytochrome $b_{f} f \mathrm{PQ}$
3. P680 $\rightarrow \mathrm{PQ} \rightarrow \mathrm{PC} \rightarrow$ Cytochrome $b_{6} f$ 4. P680 $\rightarrow \mathrm{PQ} \rightarrow$ Cytochrome $b_{8} f \rightarrow \mathrm{PC}$
47. The cell bodies of sympathetic preganglionic neurons are located in:-

1. Intermediolateral cell column of spinal

4cord
2. Posterior cell column of spinal cord
3. Celiac ganglion
4. Paravertebral ganglion
48. Insulin increases facilitated diffusion of glucose in muscle cells by:-

1. phosphorylation of glucose transporters.
2. translocation of glucose transportercontaining endosomes into the cell
2 membrane.
3. inhibition of the synthesis of mRNA for glucose transporters.
4. dephosphorylation of glucose transporters
5. A mouse carrying two alleles of insulin-like growth factor II (IgF2) is normal in size; whereas a mouse that carries two mutant alleles
lacking the growth factor is dwarf. The size of a heterozygous mouse carrying one normal and one mutant allele depends on the parental origin of the wild type allele. Such pattern of inheritance is known as
6. Sex-linked inheritance
7. Genomic imprinting

2
3. Gene-environment interaction
4. Cytoplasm inheritance
50. Which one of the following statements is INCORRECT?

1. Quantitative inheritance results in a range of measurable phenotypes for a polygenic trait.
2. Polygenic traits often demonstrate continuous variation.
3. Certain alleles of quantitative trait loci (QTL) have an additive effect on the character/trait.
.4. Alleles governing quantitative traits do not segregate and assort independently.
4. What is the genotype of a male Drosophila fly that has yellow body colour and red eyes. Brown (y^{+}) is dominant over yellow (y) and red (w^{*}) is dominant over white (w). Both are carried on X chromosome.
5. $\mathrm{X}^{w+y} Y$
6. $X^{w y} Y$
7. $X^{w y}{ }^{+} Y$
8. $X^{w y+} X^{w y^{+}} Y$
9. Which one of the following statements is INCORRECT?
10. Loss of genetic variation occurs within a
small population due to genetic drift.
11. The number of deleterious alleles present in the gene pool of a population is
called the genetic load.
Genetic erosion is a reduction in levels of
homozygosity.
12. Inbreeding depression results from increased homozygosity for deleterious alleles.
13. During which of the following major mass extinction events, over 95% of the marine species disappeared from the planet Earth?
14. Ordovician
15. Devonian
16. Permian
2
17. Triassic
18. Match the following larval forms with the phyla that they occur in

Larva		Phylum	
(a)	Amphiblastula	(i)	Mollusca
(b)	Nauplius	(ii)	Echinodermata
(c)	Glochidium	(iii)	Porifera
(d)	Bipinnaria	(iv)	Arthropoda
		(v)	Annelida

1. $a-i i i, b-i v, c-i, d-i i$
2. $a-i v, b-i i i, c-i, d-v$
3. $a-i i, b-v, c-i v, d-i$
4. $a-v, b-i, c-i i, d-i i i$
5. Which of the following global hotspots of biodiversity has the highest number of endemic plants and vertebrates?
6. Sundaland
7. Tropical Andes

2
3. Brazil's Atlantic Forest
4. Mesoamerican forests
56. Which of the following National parks has the highest density of tigers among protected areas in the world?

1. Jim Corbett
2. Keoladeo Ghana
1
3. Kaziranga
4. Manas
5. Fossils of the same species of fresh water reptiles have been found in South America añ Africa. Based on the current understanding, which of the following is the best possible explanation for this pattern?
6. The same species originated and evolved independently in these two places.
7. Species migrated from Africa to establish new populations in South America.
8. Species migrated from South America to establish new populations in Africa. 4. South America and Africa were joined at some point in Earth's history.
9. Which of the following is NOT a prediction arising out of Wilson-MacArthur's Theory of Island Biogeography?
10. The number of species on an island should increase with its size/area.
11. The number of species should decrease

3with increasing distance of the island from the source pool.
3. The turnover of species should be common and frequent.
4. Species richness on an island should be related to its average distance to the neighbouring islands.
59. The use of Kruskat Wallis test is most appropriate in which of these cases?

1. There are more than two groups and each group is normally distributed.
2. There are more than two groups and the distribution in each group is not normal.
3. There are two groups and each group is normally distributed.
4. There are two groups and the distribution in each group is not normal.
5. The utilization or consumption efficiency of herbivores is highest in
6. plankton communities of ocean waters.
7. mature temperate forests.
8. managed grasslands.
9. managed rangelands.
10. Which one of the following will be observed when auxin to cytokinin ratio is increased in the culture medium during organogenesis from tobacco pith callus?

Adventitious roots will form.
2. Adventitious shoot will form.
3. There will be no root formation.
4. There will be no shoot formation.
62. Which of the following statements is NOT true regarding the closer affinity of Archaea to Eukarya than to Bacteria?

Both Archaea and Eukarya lack peptideglycan in their cell walls.
2. The initiator amino acid for protein synthesis is methionine in both Archaea and Eukarya.
3. Histones associated with DNA are absent in both Archaea and Eukarya.
4. In both Archaea and Eukarya the RNA polymerase is of several kinds.
63. TILLING is a reverse genetics approach used in functional genomics. Which one of the following is used for TILLING?

1. T-DNA tagging by Agrobacteriummediated transformation.
2. Transposon tagging using Ac/Ds elements.
3. Mutagenesis with ethylmethane sulphonate.
4. Protoplast transformation by electroporation.
5. Which of the following is wild relative of wheat?
6. Triticum monococeum
7. Triticum compactam
8. Triticum vulgare
9. Triticum boeoticum
10. Which one of the following can be analysed using Surface Plasmon Resonance method?
11. Radiotabelled DNA probes.
12. Protein structure.

4
3. Optical density of a solution.
4. Label-free bimolecular interaction.
66. Which of the following is NOT an attribute of a species that makes it vulnerable to extinction?

1. Specialized diet
2. Low dispersal ability
3. Low trophic status

3
I. Variable population density
67. Which one of the following statements is correct for amplified-fragment length polymorphism (AFLP)?

1. PCR using a combination of random and gene-specific primers.
2. PCR amplification followed by digestion with restriction enzymes.
3. Digestion of DNA with restriction

3 enzymes followed by one PCR step.
4. Digestion of DNA with restriction enzymes followed by two PCR steps.
68. For a population growing exponentially with a growth rate r, its population doubling time is

1. $\left(N_{0} \times 2\right) / r$
2. $\ln 2 / r$
3. $\lambda \ln 2$
2
4. $\ln r \times 2$
5. In which ecosystem is the autotroph-fixed energy likely to reach the primary, carnivore level in the shortest time?
6. Temperate deciduous forest
. Grassland
3 Ocean

3

4. Tropical rain forest
5. A and B are two enantiomeric helical peptides. Their chirality can be determined by recording their
6. circular dichroism spectrum.
7. UV spectrum.
8. fluorescence spectrum.
9. Edman sequencing.

PART 'C'

71. Indicate which one of the following statements about nucleic acids and protein struetures is correct.
72. Hydrogen bonding between the bases in the major and minor grooves of DNA is absent.
73. Both uract and thymine have a methyl group but at different positions.

- 3. The backbone dihedral angles of α helices and β-sheets are very similar. Only the hydrogen bonding pattern is $\boldsymbol{4}$ different.

4. A β-turn is formed by four amino acids. The type of β-turn is determined by the dihedral angles of the second and third amino acid.
5. A researcher has developed a program to evaluate the stability of a protein by substituting each amino acid at a time by the other 19 amino acids. For a protein, researcher has observed the following changes in stability upon substitution of amino acids in loops, helices, sheets, protein core and on the protein surface.

Substitutions in

a) loops are more tolerant
b) sheets are more tolerant
c) core is less tolerant
d) helices are less tolerant
e) surface is more tolerant

Which of the above statements are correct?

1. a and c
2. c and d
3. b and e
4. a and b
5. Indicate the names of the following molecules
(A)

(8)

(D) COO
1
$\mathrm{C}=\mathrm{O}$
1
CH_{2}
1
COO
6. The turnover number and specific activity of an enzyme (molecular weight $40,000 \mathrm{D}$) in a reaction ($V_{\text {max }}=4 \mu \mathrm{~mol}$ of substrate reacted \min, enzyme amount $=2 \mu \mathrm{~g}$) are
I. $80,000 / \mathrm{min}, 2 \times 10^{3} \mu \mathrm{~mol}$ substrate $/ \mathrm{min}$
7. $80,000 / \mathrm{min}, 2 \times 10^{3} \mu \mathrm{~mol}$ substrate/second
8. $40,000 / \mathrm{min}, 1 \times 10^{3} \mu \mathrm{~mol}$ substrate $/ \mathrm{min}$
9. $\mathrm{A}=$ isocitrate, $\mathrm{B}=\alpha$-ketoglutarate,
$\mathrm{C}=$ oxaloacetate, $\mathrm{D}=$ citrate
$\mathrm{A}=$ citrate, $\mathrm{B}=$ isocitrate,
$\mathrm{C}=\alpha$-ketoglutarate, $\mathrm{D}=$ oxaloacetate
10. $\mathrm{A}=$ isocitrate, $\mathrm{B}=$ citrate,
$\mathrm{C}=\alpha$-ketoglutarate, $\mathrm{D}=$ oxaloacetate
11. $\mathrm{A}=$ citrate, $\mathrm{B}=$ isocitrate,
$\mathrm{C}=$ oxaloacetate, $\mathrm{D}=\alpha$ - ketoglutarate
12. The standard free energy change $\left(\Delta G_{0}\right)$ per mole for the reaction $A \rightleftharpoons B$ at $30^{\circ} \mathrm{C}$ in an open system is $-1000 \mathrm{cal} / \mathrm{mole}$. What is the approximate free energy change (ΔG) when the concentration of A and B are 100 micromolar and 100 millimolar, respectively?
13. 3160
14. 316
15. 31610
16. -3160
17. In a mitochondrial respiration experiment, a researcher observed the following profile of oxygen consumption upon addition of following compounds at times I, II and III.
(a) $\mathrm{ADP}+\mathrm{Pi}$
(b) Dinitrophenol, an uncoupler
(c) Oligomycin, an ATPase inhibitor
(d) Cyanide
(e) Succinate

Which of the following describes the profile appropriately?

1. I-b; II-d; III-e
2. I-a; II -d; III-c
4
3. $\mathrm{I}-\mathrm{a} ; \mathrm{II}-\mathrm{e} ; \mathrm{III}-\mathrm{c}$
4. $\mathrm{I}-\mathrm{a} ; \mathrm{II}-\mathrm{c} ; \quad$ III -b
5. $40,000 / \mathrm{min}, 2 \times 10^{3} \mu \mathrm{~mol}$ substrate $/ \mathrm{min}$
6.) fluenza virus (IV), a well known nveloped animal virus, enters its host cells through membrane fusion process catalyzed by haemagluttinin (HA) protein inside endosomes at $37^{\circ} \mathrm{C}$. HA is localized in the lipid bilayer membrane of the IV as an integral membrane protein and is responsible for binding and fusion of IV membrane with the endosomal membrane of host cells. Upon binding, IV is internalized into host cells through receptor mediated endocytosis followed by fusion of the IV membrane with endosome membrane catalyzed by HA. In a situation, if we wish to fuse IV membrane with its host cells (deficient in endocytosis) at the plasma membrane, mention the correct condition out of the following:
7. Pre-treat IV in pH 5.0 followed by its binding and fusion with host cells at pH 7.4 and $37^{\circ} \mathrm{C}$.
8. Allow the IV to bind and fuse with host cells at pH 7.4 and $37^{\circ} \mathrm{C}$.
9. IV and host cells are allowed to bind and fuse at pH 5.0 and $37^{\circ} \mathrm{C}$.
IV is subjected to incubation at $60^{\circ} \mathrm{C}$ for 30 minutes and allowed to bind and fuse with host cells at pH 5.0 and $37^{\circ} \mathrm{C} . \quad 4$
10. It is well established that "Band 3" protein of red blood cell membrane is solely responsible for Cl transport across membrane. A lysine group in the Cl^{-}binding site of "Band 3 " is crucial for this event. Keeping this in mind what is the most appropriate way to load and retain a small anionic fluorescent probe (x) inside the red blood cells (RBCs) suspended in phosphate, buffered saline (PBS), pH 7.4.
11. Incubate the RBCs with x in phosphate buffered saline (PBS, pH 7.4) at $37^{\circ} \mathrm{C}$ for 30 min .
12. Incubate the RBCs with x in PBS at $4^{\circ} \mathrm{C}$ for 30 min .
13. Incubate the RBCs with x in 1 lepes sulfate buffer (pH 7.4) at $37^{\circ} \mathrm{C}$ for 30 min .
14. Incubate the RBCs with x in Hepes sulfate buffer (pH 7.4) at $37^{\circ} \mathrm{C}$ for 30 min followed by treatment with a NH_{2} group modifying agent (covalent modification).
15. Minisatellites are used as marker for identifying individuals via DNA fingerprinting as the alleles may differ in the number of repeats. From the Southern blot shown below identify the progeny ($\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D) for the given parents ($\mathrm{M}=$ mother, $\mathrm{F}=$ father).
 2

16. A, B, C and D
17. A, B and D
18. A and D only
19. B, C and D
20. E. coli was grown in three different experimental conditions. In one, it was grown in medium containing glucose as carbon source; in the second in medium containing both glucose and galactose; and in third was infected with phage. Match the curves shown below to the treatment

21. a is grown in glucose; b is grown in glucose and galactose; c is infected with phage
22. a is grown in glucose and galactose; b in glucose; c is infected with phage
23. a is infected with phage; b is grown in glucose and galactose; c in glucose
24. a is infected with phage; b is grown in glucose; c in glucose and galactose
25. Both sphingomyelin and phosphoglycerides are phospholipids. Which one of the following statements is NOT correct?
26. While one has a fatty acid tail attached via an ester bond, in another, the fatty acid tail is attached via an amide bond
27. The hydrophilicity of both is dependent on the phosphate group and other head groups attached to the phosphate group Only one of them may contain a carbon-carbon double bond $(\mathrm{C}=\mathrm{C})$.
28. Both may have choline as head group.
29. As topoisomerases play an important role during replication, a large number of anticancer drugs have been developed that inhibit the activity of these enzymes. Which of the following statements is NOT true about topoisomerases as a potential anticancer drug target?
30. As cancer cells are rapidly growing cells, they usually contain higher level of topoisomerases.
31. The transient DNA breaks created by topoisomerases are usually converted to permanent breaks in the genome in the presence of topoisomerase targeted drugs.
32. As cancer cells often have impaired DNA repair pathways, they are more susceptible towards $\boldsymbol{\Lambda}^{\text {topoisomerase }}$ targeted drugs.
33. The drugs which specifically target topoisomerases, usually do not affect normal fast growing cells.
34. Glycophorin of red blood cell (RBC) membrane spans the membrane only once and the N -terminal is projected extracellularly and the C-terminal is exposed to the cytosolic side. With the help of antibodies (labelled with fluorophors) against N -terminal and C -terminal peptides, orientation of glycophorin across membrane can be verified. Which one of the following statements is correct?
35. Intact RBC can be Tabelled with Cterminal antibody.
36. Permeabilized RBC can be labelled with C-terminal antibodies as well as N terminal antibodies.

37. Intact RBC cannot be labelled with Nterminal antibodies.
38. Inside out ghost of RBC can be labelled with N -terminal antibodies.
39. One of the cellular events that TOR, a kinase, positively regulates is the rate of rRNA synthesis. TOR regulates the association of a transcription factor to a Pol I subunit. When TOR is inhibited by the drug rapamycin, the transcription factor dissociates from Pol 1. A yeast strain is engineered, which expresses a fusion of the transcription factor and the Pol I subunit. The level of rRNA synthesis is monitored in these cells using pulse labelling following rapamycin addition for the times indicated below. The transcript profile of rRNA observed for the wild type cells is given below:

Identify the pattern expected in the engineered strain.

85. Each aminoacyl-tRNA synthetase is precisely able to match an amino acid with the tRNA containing the correct corresponding anticodon. Most organisms have 20 different tRNA synthetases, however some bacteria lack the synthetase for charging the tRNA for glutamine (tRNA ${ }^{\text {Gin }}$) with its cognate amino acid. How do these bacteria manage to incorporate glutamine in their proteins? Choose the correct answer.

1. Glutamine is not present in the newly synthesized bacterial protein. Post translational modification converts glutamate to glutamine at the required sites.
2. In these bacteria, the aminoacyl tRNA synthetase specific for tRNA glutamate
(tRNA ${ }^{\text {plu }}$) also charges $\mathrm{tRNA}^{\text {bm }}$ with glutamine.
3. In these bacteria, the aminoacyl IRNA synthetase specific for RNA $^{\text {elu }}$ also charges $\mathrm{tR} \mathrm{NA}^{\text {gln }}$ with glutamate. A second enzyme then converts the glutamate of the charged tRNA ${ }^{\text {bln }}$ to glutamine.
4. In these bacteria, the aminoacyl tRNA synthetase charges $t \mathrm{RNA}^{\text {glu }}$ with either glutamate or glutamine according to their requirement during protein synthesis.
5. Some errors occur during DNA replication that are not corrected by proof reading activity of DNA polymerase. These are corrected by specialized repair pathways. Defect in the activities of some of the following enzymes impair this process.
A. DNA polymerase III and DNA ligase
B. AP endonuclease and DNA glycosidase
C. Mut S and Mut L
D. RecA and RecF

Defect in which of the above enzymes impair the process?

1. A, B, and C
2. D and B
3. A and D
4. A and C
5. An eukaryotic cell undergoing mRNA synthesis and processing was incubated with ${ }^{32} \mathrm{P}$ labelled ATP, with the label at the β position. Where do you think the radioactive isotope will appear in the mature mRNA?
6. ${ }^{32} \mathrm{P}$ will not appear in the mature mRNA under any circumstances because β and γ phosphates are released during
transcription.
7. Phosphate groups of the phoshodiester backbone of the mRNA will be uniformly labelled as only α phosphates are released during transcription.
8. ${ }^{32} \mathrm{P}$ will appear at the 5^{\prime} end of the mRNA if only it has " A " as the first nucleotide.
9. $\mathrm{No}^{32} \mathrm{P}$ will appear in the mature mRNA because the 5^{\prime}-terminal phosphate of an " A " residue will be further removed during the capping process.
10. Transposons can be primarily categorized into two types, DNA transposons and retrotransposons. Given below is some information regarding the above.
A. Eukaryotic DNA transposons excise themselves from one place in the genome and integrate into another site.
B. Retrotransposons are RNA sequences that are first reverse transcribed into cDNA and then integrate into the genome.
C. Retrotransposons move by a copy and paste mechanism through an RNA intermediate.
D. As DNA transposons move via a cut and paste mechanism, there can never be an increase in the copy number of a transposon.
Which of the statement(s) is/are true?
11. A and C
12. B only

1,3
2. B and D
4. D only
89. According to the ABC model of floral development in Arabidopsis as shown below,

p^{32} several genes/transcription factors e.g. AP1, AP2, AP3, AG etc., are involved. Which one of the following statements is correct?

Apetala 2 (AP2) transcripts expressed during sepal and petal development.
2. Agamous AG is considered as class A gene.
3. AP1 expressed during carpel development.
4. AP3 expressed during sepal development.
90. In an experiment peritoneal macrophages were isolated from strain A of guinea pig. These cells were then incubated with an antigen. After the antigen pulsed macrophages processed the antigen and presented it on their surface, these were mixed with T cells from (i) strain A or (ii) strain B (a different strain of guinea pig) or (iii) F1 progeny of strain $\mathrm{A} \times \mathrm{B}$. T cell proliferation was measured in response to antigen pulsed macrophages. T cells of which strain of guinea pig will be activated?

1. Strain A only
2. Strain B only
3. Strain A and F1 progeny
4. Strain B and FI progeny
5. Cadherins mediate Ca^{2+}-dependent cell-cell adhesion and play an important role in embryonic development by changing the adhesive properties of cell. Aggregation of nerve cells to form an epithelium is correlated with the appearance of N -cadherins on cell surface and vice versa. N-CAM (neural cell adhesion molecules) belongs to Ig -SF (immunoglobulin super family) and involved in fine tuning of adhesive interactions. In order to see the effect of mutations of N -cadherin and N -CAM, two sets of mice were generated. Set A - mice with mutation in N -cadherin and set B - mice with mutation in N-CAM. Which of the following results is most likely to occur?
6. Mice of both set A and set B will die in early development.
7. Mice of set A will die in early development but mice of set B will develop normally and show mild abnormalities in the development of nervous system.
8. Mice of Set A will show mild abnormalities in the development of nervous system whereas mice of set B will die early in development.
9. Mice of both set A and set B develop normally as other cell adhesion molecules will compensate for the mutations.
10. A virus infects a particular cell type, integrates its genome into a site that contains a proto-oncogene, transforms the cell and increases the level of a protein ' X ', which increases cellular proliferation. A compound ' P ' is known to increase the level of tumor suppressor proteins in that cell type whereas a compound ' Q ' helps in stimulating a protein ' Z ' that can bind to ' X ' rendering it inactive. Which one of the following graphs correctly represents the mode of action of ' P ' and 'Q'?

3

93. Dose-dependence of retinoic acid treatment supports the notion that a gradient of retinoic acid can act as a morphogen along the proximo-distal axis in a developing limb. Following are certain facts related to the above notion.
A. Treatment with high level of retinoic acid causes a proximal blastema to be respecified as a distal blastema and only distal structures are regenerated.
B. Treatment with high level of retinoic acid causes a distal blastema to be respecified as a proximal blastema and regeneration of a full limb may be initiated.
C. Treatment with retinoic acid affects only distal blastemas and causes them to form only proximal structures.
D. Treatment with high level of retinoic acid causes any blastema to form only distal structures.
Which one of the following is correct?

1. B and D
2,4
2. Only C
3. A and C
4. Only B
5. What would happen as a result of a transplantation experiment in a chick embryo where the leg mesenchyme is placed directly beneath the wing apical ectodermal ridge (AER)?
6. Distal hindlimb structures develop at the

3 end of the limb.

3. 2. A complete hindlimb will form in the region where the forelimb should be.
1. The forelimb would form normally.
2. Neither a forelimb nor a hindlimb would form since the cells are already determined.
3. Which one of the following combinations is the correct pairing of ligands with their receptors?

(i)	FGF	(a)	Patched
(ii)	Hedgehog	(b)	Frizzled
(iii)	Wnt	(c)	Receptor tyrosine kinase

2. $i-c, i i-a, i i i-b$
3. $i-a, i i-c, i i i-b$
4. $i-b, i i-c, i i i-a$
5. $i-c, i i-b, i i i-a$

Match the two columns following asexual reproduction of plants and apomixes:

A.	Agamospermy	(i)	No seed formation
B.	Clonal propaga- tion	(ii)	Seed formation
C.	Embryo sac formed from nucellus or inte- gument of the ovule	(iii)	Diplospory
D.	Gametophyte develops without fertilization from unreduced megaspore	(iv)	Apospory

1. $\mathrm{A}-$ (i); B - (ii); C - (iii); D -(iv)
2. $\mathrm{A}-$ (ii); B - (iii); C - (iv); D - (i)
3) $\mathrm{A}-$ (ii); $\mathrm{B}-$ (i); $\mathrm{C}-$ (iii); $\mathrm{D}-$ (iv)
4. A - (ii); B - (i); C - (iv); D - (iii)

4
97. If you remove a set of cells from an early embryo, you observe that the adult organism lacks the structure that would have been produced from those cells. Therefore, the organism seems to have undergone

1. autonomous specification.
2. conditional specification.
3. morphogenic specification.
4. syncytial specification.
5. Immunoglobulins have therapeutic applications in cancer treatment, infection clearance and targeted drug delivery. For this reason, immunoglobulins are briefly cleaved by the enzyme pepsin. Following are some of the statements regarding the brief digestion of immunoglobulin by pepsin.
(i) $\mathrm{F}(\mathrm{ab})_{2}$ fragment is generated which retains the antigen binding activity.
(ii) $\mathrm{F}(\mathrm{ab})$ fragment having antigen binding activity and the crystallisable F_{6} fragment are generated.
(iii)The fragment generated on incubation with a proper antigen forms a visible precipitate.
(iv)The fragment generated is incapable of forming a visible precipitate on
2 incubation with a proper antigen. Which of the above statements are correct?
6. (i) and (ii)
7. (i) and (iii)
8. (i) and (iv)
9. (ii) and (iii)
10. Cancer is often believed to arise from stem cells rather than fully differentiated cells. Following are certain views related to the above statement. Which one of the following is NOT correct?
11. Stem cells do not divide and therefore require fewer changes to become a cancer cell.
12. Cancer stem cells can self-renew as well as generate the non-stem cell populations of the tumor.
13. Teratocarcinomas prove tumors arise from stem cells without further mutations.
14. Stemness genes can often function as oncogenes.
15. Given are certain facts which define determination' of a developing embryo.
A. Cells have made a commitment to a differentiation program.
B. A phase where specific biochemical actions occur in embryonic cells.
C. The cell cannot respond to differentiation signals.
D. A phase where inductive signals trigger cell differentiation.
Which of the above statements best define determination?
16. B and D
17. Only A
2
18. A and C
19. Only B
20. The following statements are made to describe auxin signal transduction pathway, from receptor binding to the physiological response:
A. Auxin response factors (ARFs) are nuclear proteins that bind to auxin response elements (Aux REs) to activate or repress gene transcription.
B. AUX/IAA proteins are secondary regulators of auxin-induced gene expression. Binding of AUX/IAA proteins to the ARF protein blocks its transcription regulation.
C. Auxin binding to TIR1/AFB promotes ubiquitin-mediated degradation and removal of AUX/MA proteins.
D. Auxin binding to auxin response factors (ARFs) causes their destruction by the 26 S proteasome pathway.
Which one of the following combinations of above statements is correct?
21. A, B and C
22. A, C and D
23. B, C and D
24. A, B and D
25. Following are certain statements that describe plant-pathogen interactions:
A. Hemibiotrophic pathogens are characterrized by initially keeping host cells alive followed by extensive tissue damage during the later part of the infection.
B. Effectors are molecules present in host plants that act against the pathogen attack.
C. Plants possess pattern recognition receptors (PRRs) that perceive microbeassociated molecular patterns (MAMPs) present in specific class of microorganisms but are absent in the hosts.
D. Phytoalexin production is a common mechanism of resistance to pathogenic microbes in a wide range of plants.
Which one of the following combinations is correct?
26. A, B and C
2
27. A, C and D
28. B, C and D
29. A, B and D
30. Constitutive photomorphogenesis (COP1) protein, an E3 ubiquitin ligase, regulates the turnover of proteins required for photomorphogenic development. Following are certain independent statements related to the function of COPI protein:
A. In light, COPI along with SPAI adds ubiquitin tags to a subset of nuclear proteins.
B. The proteins ubiquinated by COPl and SPAI are targeted for degradation by the 26 S proteasome.
C. In dark COP1 is slowly exported to the cytosol from nueleus.
D. The absence of COP1 in the nucleus permits the accumulation of transcriptional activators necessary for photomorphogenic development.
Which one of the following combinations is
correct?
correct?
31. A and C
4
32. A and D
33. B and C
34. B and D
35. Which one of the following options correctly relates the source gland/organ with its respective hormone as well as function?

3

	Source gland	Hormone	Function
1	Thyroid	Thyroxine	Regulates blood calcium level
2	Anterior pituitary	Oxytocin	Contraction of uterine muscles
3	Posterior pituitary	Vasopressin	Resorption of water in distal tubules of nephron
4	Corpus luteum	Estrogen	Supports pregnancy

105. The membrane potential in a giant squid axon recorded intracellularly at the resting condition $(-70 \mathrm{mV})$ was reversed at the peak of action potential $(+35 \mathrm{mV})$ after stimulation of the nerve fibre with a threshold electrical stimulus. This overshoot of the membrane potential has been explained in the following proposed statements:
A. The rapid increase in Na^{*}-conductance during early phase of action potential causes membrane potential to move toward the equilibrium potential of Na^{+} (+45 mV)
B. The Na^{+}-conductance quickly decreases toward resting level after peak in the early phase and Na^{+}-ions are not able to attain its equilibrium potential within this short time.
C. The conductance of K^{\prime} at the early phase of action potential is increased and that leads to the reversal of membrane potential.
D. The increase of K^{+}- conductance due to stimulation of nerve occurs before the changes of Na^{+}- conductance is initiated and thus causes overshoot at the peak of action potential.
Which one of the following is correct?
106. A only
107. C only
108. A and B
109. C and D
110. A diabetic patient has a high blood glucose level due to reduced entry of glucose into various peripheral tissues in addition to other causes. There is no problem of glucose absorption, however, in the small intestine
of these patients. The following statements are put forward to explain this observation:
A. Glucose is transported into the cells of muscles by glucose transporters (GLUTs) which are influenced by insulin receptor activation.
B. Glucose transport into the enterocytes is mediated by sodium-dependent glucose transporters (SGLTs) which are not dependent on insulin.
C. Glucose molecules are transported in the small intestine by facilitated diffusion.
D. The secondary active transport of glucose occurs in muscles.
Which one of the above statement(s) is INCORRECT ?
111. Only A
4
112. A and B
113. Only C
114. C and D
115. Several transport steps are involved in the movement of photosynthate from the chloroplasts. Following are certain statements regarding the transport of photosynthate:
A. Pentose phosphate formed by photosynthesis during the day is transported from the chloroplast to the cytosol, where it is converted to sucrose.
B. Carbon stored as starch exits the chloroplast at night primarily in the form of maltose and is converted to sucrose in cytosol.
C. During short distance transport, sucrose moves from producing cells in the mesophyll to cells in the vicinity of the sieve elements in the smallest veins of the leaf.
D. In the process of phloem loading, sugars are transported into phloem parenchyma cells.
Which one of following combinations of above statements is correct?
116. A and B
117. C and D
4
118. B and C
119. A and D
120. A person showed the symptoms of diarrhea, gas and pain whenever milk was consumed. The doctor advised the person to take curd instead of milk and subsequently the symptoms mostly disappeared due to this change of dairy product. The following statements are proposed to explain this observation:
A. The person has deficiency in the intestinal sucrase-maltase
B. Curd is not deficient in sucrose and maltose
\mathcal{C}. The person has deficiency in the intestinal lactase
D. The bacteria in curd contain lactase

Which one of the following is true?

1. A only
2. C only
4
3. A and B
4. C and D
5. Ribulose bisphosphate carboxylase (Rubisco) catalyzes both carboxylation and oxygenation of ribulose-1, 5-bisphosphate. The latter reaction initiates a physiological process known as 'photorespiration'. The following are certain statements on photorespiration:
A. The active sites on Rubisco for carboxylation and oxygenation are different.
B. One of the steps in photorespiration is conversion of glycine to serine.
C. 50% of carbon lost in chloroplast due to oxygenation is recovered through photorespiration.
D. The pathway of photorespiration involves chloroplast, peroxisome and mitochondria.
Which one of the following combinations of above statements is correct?
6. A and C
3
7. A and D
8. B and D
9. C and D
10. A majority of humans with normal colour vision was found to be more sensitive to red light in Rayleigh match where the subject mixed variable amount of red and green light to match monochromatic orange. Which one of the following statements is NOT true to explain the observation?
11. There are variations in the sensitivity of long-wave cone pigments.
12. The short-wave cone opsin in redsensitive subjects is different from others.
13. The absorption curve of long-wave cone pigment peaks at 556 nm in red-sensitive subjects while it peaks at 552 nm in others.
14. The long-wave cone opsin in redsensitive subjects is different in primary structure from that of others.
15. Action potentials were recorded intracellularly from different parts of mammalian heart and these are shown below. Which one of these has been recorded from sinoatrial node?

16. Light reactions of photosynthesis are carried out by four major protein complexes: Photosystem I (PSI), photosystem II (PSII), the cytochrome oof complex and ATP synthase. The following are certain statements on PSI:
A. PSI reaction centre and PSII reaction centre are uniformly distributed in the granal lamellae and stromal lamellae.
B. The electron donor for the P700 of PSI is plastocyanin and electron acceptor of P700* is a chlorophyll known as A_{0}.
C. The core antenna and P700 are bound to two key proteins PsaA and PsaB.
D. Cyclic electron flow occurs from the reducing side of PSI via plastohydroquinone and $b_{6} f$ complex. This supports ATP synthesis but does not reduce NADP'.
Which one of the following combinations of the above statements is correct?
17. A, B and C
4
18. A, C and D
19. A, B and D
20. B, C and D
21. A male mouse cell line has a large translocation from X chromosome into chromosome 1 . When a GFP containing transgene is inserted in this chromosome I with translocation, it is often silenced. However when inserted in the other homologue of chromosome 1 that does not contain the translocation, it is almost always expressed. Which of the following phenomenon best describes this effect?

Genome imprinting
2. Gene balance
3. Sex-specific expression
4. Dosage compensation
114. Fruit colour of wild Solanum nigrum is controlled by two alleles of a gene (A and a). The frequency of $\mathrm{A}, p=0.8$ and $\mathrm{a}, q=0.2$. In a neighbouring field a tetraploid genotype of S nigrum was found. After critical examination five distinct genotypes were found; which are AAAA, AAA, AMa, Ala and ara. Following Hardy Weinberg principle and assuming the same allele frequency as that of diploid population, the numbers of phenotypes calculated within a population of 1000 plants are close to one of the following:

AAAA: AAA: AA aa: Aaa : aaa

1. $409: 409: 154: 26: 2 \quad \boldsymbol{4}$
2. $409: 409: 144: 36: 2$
3. $409: 420: 144: 25: 2$
4. Five bacterial markers were followed for a co-transduction experiment. The following table documents the observations of this experiment. ' + ' denotes co-transduction and \because denotes lack thereof; 'ND' stands for not determined.

4
Pick the correct order in which the genes are arranged on the bacterial chromosome

1. str -gal - leu - arg - met
2. leu -met - arg - str -gal
3. leu-str-met-gal-arg

4/ arg - gat - str - leu - met
116. Two interacting genes (independently assorting) were involved in the same pathway. Absence of either genes function leads to absence of the end product of the pathway. A dihybrid cross involving the two genes is carried out. What fraction of the F_{2} progeny will show the presence of the end product?

1. $1 / 4$
2. $9 / 16$
3
3. $3 / 4$
4. $15 / 16$
5. Poplar is a dioecious plant. A wild plant with 3 genes $A A B B C C$ was crossed with a triple recessive mutant aabbec. The F1 male hybrid (AaBbCc) was then back crossed with the triple mutant and the phenotypes recorded are as follows:

	2
AaBbCc	300
aaBbCc	100
aaBbcc	16
AabbCc	14
AaBbcc	65
aabbCc	75
aabbcc	310
Aabbcc	120
	2×30

The distance in mus unit (mu) between A to B and B to C is

1. 25 and 17 mu , respectively
2. 33 and 14 mu , respectively
3. 25 and 14 mu , respectively
4. 33 and 17 mu , respectively
5. A three point test cross was carried out in Drosophila melanogaster involving three adjacent genes X, Y and Z , arranged in the same order. The distance between X to Y is 32.5 map unit (mu) and that between X to Y is 20.5 map. The coefficient of coincidence $=0.886$. What is the percentage of double recombinants in the progeny obtained from the testcross?
6. $\sim 6 \%$
1
7. $\sim 8 \%$
8. $\sim 12 \%$
9. $\sim 16 \%$
10. Following is a cladogram showing phylogenetic relationships among a group of plants:

In the above representation, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D respectively represent

1. xylem and phloem, embryo, flower, seed. 2. embryo, xylem and phloem, seed, flowers.
2. embryo, xylem and phloem, flower, seed.
3. xylem and phloem, flower, embryo, seed.
4.

With reference to the phylogenetic tree presented above, which of the following statements is true?

Amphibians, reptiles, birds and mammals share a common ancestor.
2. Birds are more closely related to reptiles than to mammals.
3. Cartilagenous fishes are the ancestors of amphibians.
4. Lampreys and mammals are not related.
121. Match the following human diseases with their causal organisms

A.	Sleeping Sickness	(i)	Trypanosoma cruzi
B.	Chagas disease	(ii)	Trypanosoma brucei
C.	Elephantiasis	(iii)	Borrelia burgdorfei
D.	Lyme disease	(iv)	Wuchereria bancrofti

1. A - (ii); B - (iv); C - (iii); D - (i)

3
2. $\mathrm{A}-$ (i); $\mathrm{B}-$ (ii); $\mathrm{C}-$ (iv); $\mathrm{D}-$ (iii)
3. A - (ii); $\mathrm{B}-$ (i); C - (iv); D - (iii)
4. A - (ii); B - (iv); C - (i); D - (iii)
122. The approximate $P: B$ (Net Primary Production: Biomass) ratios in four different ecosystems (A, B, C, D) are
A -0.29 ; B $-0.042, \mathrm{C}-16.48 ; \mathrm{D}-8.2$
The four ecosystems are

1. A - Ocean; B - Lake; C-Grassland; D Tropical forest
2. A - Grassland; B - Tropical forest; C Ocean; D - Lake
3. A - Tropical forest; B - Ocean; C Grassland; D - Lake
4. A - Grassland; B - Ocean; C-Lake; D Tropical forest
5. Match major events in the history of life with Earth's geological period.

Event		Geological Period	
A.	First reptiles	(i)	Quarternary
B.	First mammals	(ii)	Tertiary
C.	First humans	(iii)	Cretaceous
D.	First amphibians	(iv)	Triassic
		(v)	Carboniferous
		(vi)	Devonian

$$
\begin{aligned}
& \text { 1. A - (v); B - (i); C-(ii); D-(v) } \\
& \text { 2. A - (v); B - (iv); C - (i); D-(vi) } \\
& \text { 3. A - (vi); B - (iv); C-(ii); D-(vi) } \\
& \text { 4. A - (iii); B - (i); C - (vi); D-(v) }
\end{aligned}
$$

124. Based on the table given below, which of the following option represents the correct match?

Category		Plant Species	
A.	Critically endangered	(i)	Chromolaena odorata
B.	Vulnerable	(ii)	Dipterocarpus grandiflorus
C.	Extinct	(iii)	Euphorbia mayuranthanii
D.	Invasive	(iv)	Saraca asoka

1. $\mathrm{A}-$ (i); B - (iv); C - (iii); D - (ii)
2. A - (ii); B - (iii); C - (iv); D - (i) $\boldsymbol{4}$
3. $\mathrm{A}-$ (i); $\mathrm{B}-$ (iv); C - (ii); D - (iii)
4. A - (ii); B - (iv); C - (iii); D - (i)
5. For the following invertebrate structures/ organs, identify their major function and the animal group in which they are found:
Nematocyst (A), Protonephridia (B), Malpighian Tubules (C) Radula (D)
6. A - Porifera, Skeletal Support; B Mollusca, excretion C - Insecta, respiration; D - Anthozoa, prey capture
7. A - Anthozoa, prey capture; B Planaria, excretion C - Mollusca, excretion; D - Insecta, food processing
8. A - Planaria, excretion; B - Mollusca, respiration; C - Insecta, respiration; D - Porifera, prey capture
9. A - Anthozoa, prey capture; B -

Planaria, excretion; C - Insecta, excretion; D - Mollusca, food processing
126. If gypsy moth egg density is 160 at time t and 200 at $\mathrm{t}+1$, what will be its value at time $\mathrm{t}+3$, assuming that egg density continues to increase
at conslant rate?

1. 250
3
2. 280
3. 312
4. 390
5. The birth rates (b) and death rates (d) of two species land 2 in relation to population density (N) are shown in the graph. Which of the following is NOT true about the density dependent effects on birth rates and death rates?

1 Birth rates are density-dependent in species 1 and density-independent in species 2.
2. Death rates are density-dependent in both the species.
3. Density-dependent effect on birth rate is stronger in species 1 than in species 2.
4. The density-dependent effects on death rates are similar in both the species.
128. Match the following associations involved in dinitrogen fixation with their representative genera

Associations			Genera	
A.	Heterotrophic nodulate	(i)	Azotobacter	
B.	Heterotrophic Non-nodulate	(ii)	Frankia	
C.	Phototrophic associative	(iii)	Nostoc	
D.	Phototrophic free-living	(iv)	Rhodospirillum	

1. A - (ii); B - (i); C - (iv); D - (iii)
2. A - (iii); B - (i); C -(ii); D - (iv)

The coefficient of relatedness between individuals A and B, A and D , and between D and C is

1. $0.5,0.25,0.125$ respectively. 2. $0.5,0.5,0.25$ respectively.
2. $0.5,0.25,0.75$ respectively.
3. $0.125,0.5,0.5$ respectively.
4. For two species A and B in competition, the carrying capacities and competition co-
efficients are
$\mathrm{K}_{\mathrm{A}}=150 \mathrm{~K}_{\mathrm{B}}=200$
$\alpha=1.0 \quad \beta=1.3$
According to the Lotka-Volterra model of interspecific competition, the outcome of competition will be
5. Species A wins.
6. Species B wins.
7. Both species reach a stable equilibrium.
8. Both species reach an unstable equilibrium.
9. In a lake subjected to progressive eutrophication, temporal changes in the magnitude of selected parameters (A, B, C, D) are shown in the graph

The parameters $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are

1. A-Green algal biomass, B - Cyanobacterial biomass, C - Dissolved Oxygen concentration, D-Biological Oxygen Demand
2. A-Biological Oxygen Demand, BCyanobacterial biomass, C - Dissolved Oxygen concentration, D - Green algal biomass
3. A- Biological Oxygen demand, B -

Green algal biomass, C - Cyanobacterial biomass, D - Dissolved Oxygen concentration
4. A-Cyanobacterial biomass, B Biological Oxygen Demand, C - Green algal biomass, D - Dissolved Oxygen concentration
132. A particular behavioural variant affects fitness of an organism. The relationship between the frequency of the variant in the population and fitness are plotted below. In which of these cases is the behavioural variant most likely to reach a frequency of 1 ?

1. Only b
1
2. Only c
3. b and d
4. a and d
while A_{2} mutates to A_{1} at a rate of $=2 \times$ 10^{-5}. Assume that the population is infinitely large and no other evolutionary force is acting. The equilibrium frequency of allele A_{1} is
5. 1.0
6. 0.5
7. 0.67
8. 0.33
9. The following table shows the mean and variance of population densities of species A, B and C .

Statistic	Spec- ies Λ	Spec- ies B	Spe- cies C
Mean \bar{x}	5.30	7.05	5.30
Variance s ${ }^{2}$	5.05	0.35	50.5

Based on the above, which of the following statements is correct?

1. Species A and B show uniform distribution, whereas species C shows clumped distribution.
2. Species A shows random distribution, species B shows uniform distribution. and species C shows clumped distribution.
3. Species A and B show clumped distribution, whereas species C shows uniform distribution.
4. Species A shows clumped distribution, species B shows random distribution, and species C shows uniform distribution.
5. With reference to the graph given below, identify the optimal territory size.

6. A
7. C
8. B
9. D
10. Consider an autosomal locus with two alleles A_{1} and A_{2} at frequencies of 0.6 and 0.4 respectively. Each generation. A_{1} mutates to A_{2} at a rate of $\mu=1 \times 10^{-5}$
11. In a typical gene cloning experiment. by mistake a researcher introduced the DNA of interest within arpicilin resistant gene instead of lac z gene. The competent cells were allowed to take up the plasmid and then plated in the media containing ampicilin, X-gal and IPTG and subjected to blue-white screening. Considering all plasmids were recombinant which one of the following statements correctly describes the outcome of the experiment?
12. The bacteria which took up the plasmids would grow and give blue colonies.
13. The bacteria which took up the plasmids would not grow.
14. The bacteria which took up the plasmids would form white colonies.
15. All of the bacteria would grow and give white colonies.
16. From statements on protein structure and interactions detailed below, indicate the correct statement
17. The concentration of a tryptophan containing protein can be determined by monitoring the fluorescence spectrum of the protein.
18. A peptide with equal number of Glu and Lys amino acids can show multiple charged species in its electrospray ionization mass spectrum.
19. The circular dichroism spectrum of a protein shows predominantly helical conformation. Analysis of its two dimensional NMR spectrum shows predominantly β-structure.
20. Binding constant can be determined by

2 two interacting molecules by the technique of surface plasma resonance only if there is strong hydrophobic interactions between them.
138. The sequence of the peptide KGLITRTGLIKR can be unequivocally determined by

1. Only Edman degradation.
2. Amino acid analysis and MALDI MS/MS mass spectrometry.
3. MALDI MS/MS mass spectrometry. 4. MALDI mass spectrometry after treatment of the peptide with trypsin.
4. Performance of biosensor is evaluated by their response to the presence of an analyte. The physiological relevant concentration of analyte is between $10 \mu \mathrm{M}$ and $50 \mu \mathrm{M}$. Which among the following biosensor responses is best?

5. One hundred independent populations of Drosophila are established with 10 individuals in each population, of which, one individual is of $A a$ genotype and the
other nine are of $A A$ genotype. If random genetic drift is the only mechanism acting on these populations, then after a large number of generations, the expected number of populations fixed for the " a " allele is
6. 75
7. 50
8. 25
9. 5
10. Molecular polymorphic markers are already known with respect to tobacco mosaic virus (TMV) resistance in tobacco. Among these, which marker system you will select that will be simple, economic and less time
consuming:
11. RAPD
12. AFLP
13. RFLP
14. EST-SSR
15. It is hypothesized that the mean $\left(\mu_{0}\right)$ dry weight of a female in a Drosophila population is 4.5 mg . In a sample of 16 female with $\bar{Y}=4.8 \mathrm{mg}$ and $\mathrm{s}=0.8 \mathrm{mg}$, what dry weight values would lead to rejection of the null hypothesis at $p=0.05$ level?
(take $\mathrm{t}_{0.05}=2.1$)
16. Values lower than 4.0 and values higher than 5.6
17. Values lower than 3.20 and values higher than 6.40
18. Values lower than 4.38 and values higher than 5.22
19. Values lower than 3.22 and values higher than 6.48
20. Radioimmuno assay (RIA) can be employed for the detection of insulin in blood plasma. For this, ${ }^{125}$ I-labelled insulin is mixed and allowed to bind with a known concentration of anti-insulin antibody. A known volume of patients' blood plasma is then added to the conjugate and allowed to compete with the antigen binding sites of antظody. The bound antigen is then separated from unbound ones and the radioactivity of free antigen is then measured by gamma counter. Following are some of the statements made about this assay.

The ratio of radioactive count for unbound antigen to the bound one is more at the end of reaction.
(ii) The ratio of radioactive count for 1 unbound antigen to the bound one is less at the end of reaction.
(iii) For a diabetic patient, the radioactive count for free antigen is less than that for a normal individual.
(iv) For a diabetic patient, the radioactive count for free antigen is more than that for a normal individual.
Which of the above statements are true?

1. (i) and (iii)
2. (i) and (iv)
3. (ii) and (iii)
4. (ii) and (iv)
5. A researcher wants to obtain complete chemical information, i.e., head groups and fatty acids of phospholipids from liver tissues. Phospholipids have fatty acids of different lengths and unsaturation and also the head groups are of different chemistries. Which of the following combination of techniques would provide complete chemical description of phospholipids?
2 1. Only thin layer chromatography (TLC)
6. TLC and gas chromatography
7. Paper and thin layer chromatography
8. Only paper chromatography
9. In an effort to produce gene knockout mice, a gene targeted homologous recombination was tried with the exogenous DNA containing neor gene (confer G-418 resistance) and $t k^{H s v}$ gene (confers sensitivity to the cytotoxic nucleotide analog ganciclovir). If the neor gene was inserted within the target gene in the exogenous DNA and considering that both homologous and non-homologous recombination (random integration) is taking place, which one of the following statements is NOT correct about the possible outcome of the experiment?
10. Cells with non-homologous insertion will be sensitive to ganciclovir.
11. Non-recombinant cells will be sensitive towards G-418 and resistant to ganciclovir
12. Homologous recombination will ensure that cells will be resistant to both 3 ganciclovir and G-418.
13. Homologous recombinants will grow in G-418 containing media but will be sensitive towards ganciclovir.
